ds.forestplot.RdDraws a forestplot of the coefficients for Study-Level Meta-Analysis performed with DataSHIELD
ds.forestplot(mod, variable = NULL, method = "ML", layout = "JAMA")list List outputted by any of the SLMA models of DataSHIELD (ds.glmerSLMA,
ds.glmSLMA, ds.lmerSLMA)
character (default NULL) Variable to meta-analyse and visualise, by setting this
argument to NULL (default) the first independent variable will be used.
character (Default "ML") Method to estimate the between study variance.
See details from ?meta::metagen for the different options.
character (default "JAMA") Layout of the plot.
See details from ?meta::metagen for the different options.
if (FALSE) { # \dontrun{
# Run a logistic regression
builder <- DSI::newDSLoginBuilder()
builder$append(server = "study1",
url = "http://192.168.56.100:8080/",
user = "administrator", password = "datashield_test&",
table = "CNSIM.CNSIM1", driver = "OpalDriver")
builder$append(server = "study2",
url = "http://192.168.56.100:8080/",
user = "administrator", password = "datashield_test&",
table = "CNSIM.CNSIM2", driver = "OpalDriver")
builder$append(server = "study3",
url = "http://192.168.56.100:8080/",
user = "administrator", password = "datashield_test&",
table = "CNSIM.CNSIM3", driver = "OpalDriver")
logindata <- builder$build()
# Log onto the remote Opal training servers
connections <- DSI::datashield.login(logins = logindata, assign = TRUE, symbol = "D")
# Fit the logistic regression model
mod <- ds.glmSLMA(formula = "DIS_DIAB~GENDER+PM_BMI_CONTINUOUS+LAB_HDL",
data = "D",
family = "binomial",
datasources = connections)
# Plot the results of the model
ds.forestplot(mod)
} # }