ds.forestplot.Rd
Draws a foresplot of the coefficients for Study-Level Meta-Analysis performed with DataSHIELD
ds.forestplot(mod, variable = NULL, method = "ML", layout = "JAMA")
list
List outputed by any of the SLMA models of DataSHIELD (ds.glmerSLMA
,
ds.glmSLMA
, ds.lmerSLMA
)
character
(default NULL
) Variable to meta-analyze and visualize, by setting this
argument to NULL
(default) the first independent variable will be used.
character
(Default "ML"
) Method to estimate the between study variance.
See details from ?meta::metagen
for the different options.
character
(default "JAMA"
) Layout of the plot.
See details from ?meta::metagen
for the different options.
if (FALSE) { # \dontrun{
# Run a logistic regression
builder <- DSI::newDSLoginBuilder()
builder$append(server = "study1",
url = "http://192.168.56.100:8080/",
user = "administrator", password = "datashield_test&",
table = "CNSIM.CNSIM1", driver = "OpalDriver")
builder$append(server = "study2",
url = "http://192.168.56.100:8080/",
user = "administrator", password = "datashield_test&",
table = "CNSIM.CNSIM2", driver = "OpalDriver")
builder$append(server = "study3",
url = "http://192.168.56.100:8080/",
user = "administrator", password = "datashield_test&",
table = "CNSIM.CNSIM3", driver = "OpalDriver")
logindata <- builder$build()
# Log onto the remote Opal training servers
connections <- DSI::datashield.login(logins = logindata, assign = TRUE, symbol = "D")
# Fit the logistic regression model
mod <- ds.glmSLMA(formula = "DIS_DIAB~GENDER+PM_BMI_CONTINUOUS+LAB_HDL",
data = "D",
family = "binomial",
datasources = connections)
# Plot the results of the model
ds.forestplot(mod)
} # }